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ABSTRACT
The aim of this paper is to categorize and 
compare the performance of existing two-
dimensional (2D) micro-mirror array (MMA)
devices and to establish physical bounds on the 
performance of such technologies. Existing 
MMA technologies are categorized according to 
their actuation approach and key examples are 
discussed to demonstrate how each category 
achieves their specific combinations of 
performance capabilities. Performance plots are 
provided that compare a variety of mirror-array-
capability metrics such as mechanical half-
range, maximum acceleration or stepping rate, 
and energy density. Considerations of mirror 
size, array size, and fill-factor are also 
addressed. The performance of an MMA design 
created by the authors will be included within 
these plots to highlight its unique advanced 
capabilities.

MICRO-MIRROR REVIEW EFFORT
The published performance capabilities of 
existing micro-mirror designs have been studied 
and compared for the purposes of this paper. 
Figure 1 provides a plot of the number of micro-
mirror design publications per year since their 
conception. 

FIGURE 1. MMA publications over time

In this paper, we restrain our focus on 2D MMA 
designs that achieve at least tip and tilt DOFs. 

87 designs from 22 companies and 21 academic
research groups have been categorized and 
compared. The reported performance specs of 
each design have been adapted to a form that 
can be compared universally for all mirror 
designs. The performance of other micro-mirror
designs will be discussed in a later paper. 

MICRO-MIRROR ARRAY CATEGORIZATION
We primarily categorize 2D MMAs according to 
how they are actuated. We further differentiate 
these arrays by categorizing them according to 
whether their mirror surfaces are discrete or 
continuous (i.e., whether each mirror in the array 
is an independent well-defined unit or whether 
each mirror is ambiguously defined as a small 
portion of one continuous surface that is 
deformed by a multiplicity of actuators). We 
have thus divided the designs into eight
categories: Plate Discrete, Comb Discrete, 
Thermal Discrete, Lorentz Discrete, Piezo
Discrete, Plate Continuous, Piezo Continuous, 
and Lorentz Continuous.

1) Plate Discrete Actuation
Electrostatic plate actuators are most commonly 
used within discrete MMAs because they are
compact, fast, require low power consumption,
and are easily integrated within MEMS devices. 
More than 35 designs utilize electrostatic plate 
actuators from among the complete body of
discrete 2D MMA designs that we considered in 
this study accounting for more than 60% of the 
designs. 

Tip-Tilt-Piston Deformable Mirror (TTP-DM) [1], 
[2], developed by Boston Micromachines in 
2007, consists of hexagonal mirrors with 3 DOFs
(tip, tilt, and piston). Figure 2 illustrates the 
architecture of TTP-DM device. Each mirror is 
actuated by three independent pairs of 
electrostatic plates from below enabling 6 mrad
(0.35˚) of tip or tilt motion and 2um of piston 



stroke. The high fill-factor (99%), fast time 
response (17us), and high resolution (14 bits) 
make TTP-DM ideal for applications in wavefront 
control. TTP-DM’s relatively small range of 
motion, however, limits its ability to steer light. 

Transparent Networks Inc. (currently defunct) 
developed an MMA with ±10˚ tip and tilt range
capability [3, 4]. Figure 3a is a cutaway of the 
device showing the layered structure. Each 
mirror connects to a mechanical angular 
amplifier which is actuated by electrostatic 
electrodes (Fig. 3b). The mechanical linkage is 
designed so that the rotation of the mirror is 
amplified by a factor of 4. The fill-factor is about 
75%, but, in principle, this metric could be 
improved.

Other Plate Discrete 2D MMA designs of note 
can be found in [6-8] (by commercial 
companies) and [9-12] (by academic research 
groups).

2) Comb Discrete Actuation
Comb actuators are another form of capacitive 
actuation that utilize electrostatic force. The 
interdigitated teeth of the comb allow higher
energy density and larger actuation forces than 
capacitive parallel plate actuators of the same 
size. However, the complex geometry of comb 
actuators increases the design and fabrication
complexity of MMAs and thus makes their 
realization more challenging. About 25% of all 
discrete 2D MMA designs considered for this 
paper are classified as Comb Discrete designs.

Alcatel-Lucent developed a 2D tip-tilt-piston
MMA actuated by electrostatic combs [13].
Figure 4a shows the mirror structure. The mirror 
surface is connected to four arms by flexible 
joints. Each arm is attached to a rotational comb
(Fig. 4b). By controlling the voltage on each 
comb drive, the mirror surface can achieve up to 
±4˚ tip/tilt and 5um upward piston motion within 
20us time. The reported performance of this
design is one of the best among all the 2D MMA 
devices. 

IW Jung et al. [14] from Stanford University 
developed a comb-actuated MMA design that 
achieves up to ±0.9˚ tilt, ±0.1˚ tip, 0.07um piston, 
99% fill-factor and ~10us response time. Figure 
5a shows a top view and Fig. 5b shows a bottom 
view of the gimbaled structure of the mirror. 
Although not yet demonstrated, IW Jung et al. 
report that high fill-factor (>94%), fast response 

(<100us), and large rotational angle (>±10˚) are 
feasible for designs with appropriately scaled 
actuators.

FIGURE 2. Top and side view of TTP-DM

FIGURE 3. Transparent Networks MMA

FIGURE 4. Alcatel-Lucent micro-mirror design

We have also created a Comb Discrete 2D MMA 
design [15, 16]. The predicted performance 



capabilities of our array are discussed and 
compared in Performance Plots Section. Other 
Comb Discrete MMA designs of note can be 
found in [17, 18] (by commercial companies) 
and [19-21] (by academic research groups).

FIGURE 5. Gimbaled micro-mirror design by 
IW Jung et al.

FIGURE 6. Micro-mirror by H. Xie et al.

3) Thermal Discrete Actuation
Electrothermal bimorphs are the most commonly 
used thermal actuators. Limited by the actuation 
dynamics, thermally actuated micro-mirrors can 
only operate at relatively low speed (<100Hz 
stepping rate), thus less chosen for fast and 
precise application.

A Thermal Discrete 2D MMA was developed by 
H. Xie et al. [22] from University of Florida. 
Figure 6 shows the single mirror design. The 

mirror surface is suspended by four pairs of 
electrothermal bimorph actuators. The MMA has 
an 88% fill-factor, ±15˚ tip/tilt range and ~310um 
piston range. The response time of the device is 
on the order of 10ms. 

Other Thermal Discrete 2D MMA designs of 
note can be found in [23] and [24]. 

4) Lorentz Discrete Actuation
Electromagnetic actuators utilize Lorentz force 
generated by electric current in magnetic field. 
The driving torque is controlled by the strength 
and direction of the current flow. The main 
challenge in the design of Lorentz Discrete 
MMAs is current path planning. In addition, 
Joule losses and disturbance in magnetic field 
may be issues in practical applications. 

Integrated Micro Machines developed a TTP 
MMA actuated by Lorentz force (Fig. 7a) [25]. 
The mirror has a 98% fill-factor and can be 
driven up to ±6˚ tip/tilt and ±50um piston. 
Position sensors are integrated in the each 
mirror (Fig. 7b), and a 1kHz closed-loop servo 
control is achieved. Due to the actuator design, 
the single mirror size is relatively large (3×3mm2 

and above) comparing to most MMA devices. 

Other Lorentz Discrete 2D MMA designs of note
can be found in [26] and [27].

FIGURE 7. Integrated Micro Machines MMA

5) Piezo Discrete Actuation
Piezo actuators are designed to utilize electric-
field-induced strain of piezoelectric materials. 
Typically, piezoelectric materials have large load 
capacity but small deformation range. Therefore, 
piezo actuators of discrete 2D MMAs are most 
commonly in the form of unimorph or bimorph. 

There are a few piezo-actuated single micro-
mirror designs, but so far there is only one 
reported 2D MMA with piezoelectric actuation. 
This MMA is developed by Y. Yee et al. [28] 



from LG Electronics Institute of Technology. The 
2D TT micro-mirror array is actuated by PZT 
unimorphs (Fig. 8), achieving ±0.7˚ rotation 
around outer axis and ±0.5˚ around inner axis. 

FIGURE 8. MMA Design by Y. Yee et al.

FIGURE 9. Boston Micromachines 4K-DM

FIGURE 10. Surface Parallel Array DM

6) Plate Continuous Actuation
Boston Micromachines developed a few 
continuous deformable mirror devices based on 
same actuator design as TTP-DM [29]. One of 
them is studied and tested in [30]. Figure 9
shows the basic working principle of this so-
called 4K-DM device. It achieves up to 4um of 

localized deformation within 100us response 
time. The electrostatic actuators are placed 
under the mirror surface with a 400um pitch.

IW Jung et al. [31] developed a single-crystal-
silicon continuous membrane deformable mirror. 
The mirror is capable of ~125nm localized 
deformation with a pitch of 200um at a fast 
speed (~25kHz).

7) Piezo Continuous Actuation
AOA Xinetics developed a few continuous 
deformable mirror devices with piezoelectric 
actuation [32]. In most of their deformable mirror 
devices, PZT stack actuators are placed directly 
under the mirror to generate large deformation 
force on the mirror surface. One exception is 
Surface Parallel Array, which is actuated by 
electrostrictive ceramic bimorph actuator array 
(Fig. 10). The pitch of the actuators ranges from 
1mm to 5mm, corresponding to stoke of 0.5um 
to 4um. The bandwidth varies between 2.5kHz 
and 5kHz.

8) Lorentz Continuous Actuation
There is only one company named Imagine 
Optic that developed continuous deformable 
mirror devices with Lorentz actuation [33]. A 
typical Imagine Optic deformable mirror 
achieves ±50 um piston stroke with ~2mm 
actuator pitch and ~0.5kHz bandwidth.

PERFORMANCE PLOTS
All 2D MMA designs that achieve at least tip and 
tilt DOFs from among those studies are plotted 
in Figs. 11 and 12. Figure 11a provides
information about the MMA’s dynamic 
capabilities by showing the maximum angular 
acceleration against tip/tilt range. The maximum 
angular acceleration dictates how fast the mirror 
can be driven. In addition, Fig 11b provides 
mirror size information by making the scatter dot 
size proportional to the single mirror size. Figure 
12 shows the energy against tip/tilt range. 

The green hexagon shown in the figures 
represents the performance capabilities of a 
Comb Discrete MMA design created by the 
authors. This design possesses a transmission 
feature that enables it to be tuned in such a way 
that it can be made to slide along the constant 
energy angled dashed lines in Fig. 11. By 
comparison, the MMAs with similar or better 
dynamic capabilities have much smaller single 
mirror size. The dots corresponding to these 
MMAs are too small to be seen in Fig. 11b. The 



thick horizontal dashed line in Fig. 12 represents 
the theoretical bound on energy density and the 
thin horizontal dashed line in the same figure 
represents the practical bound on achievable 
energy density. The predicted energy density of 
our design is very close to the practical bound. 

FIGURE 12. Energy Density vs. Size

CONCLUSIONS
The majority of published micro-mirror designs 
have been studied, categorized, and compared. 
Plots that capture their performance capabilities 
have been generated and theoretical bounds 
have been calculated to help designers 
recognize how much design improvement is 
feasible. 
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